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J .  Phys. A: Math. Gen. 17 (1984) 1247-1250. Printed in Great Britain 

Off -shell variational bounds 

A E A Warburton 
Department of Applied Mathematics, The University of Hull, Hull UK 

Received 4 November 1983 

Abstract. The Schwinger variational principle is shown to lead to upper and lower bounds 
for the off-shell scattering amplitude for local potentials satisfying j,^ rl V(r)l dr < CO and 

I V(r)i dr <: CO. 

1. Introduction 

In a recent paper (Warburton 1983, hereafter referred to as I) the Hellmann-Feynman 
theorem was proved for local potentials satisfying the conditions 

and corresponding bounds deduced for the R-matrix elements, both on and off the 
energy shell. However, an important application of the theorem, to which the above 
proof does not apply, is to obtain bounds using the Schwinger variational principle, 
where a local potential is approximated by a sum of separable terms (Bessis et a1 
1977). The purpose of the present paper is to extend the results of I to a sum of local 
and separable potentials, thereby justifying the Schwinger principle bounds, both on 
and off the energy shell. 

Specifically, we consider a potential V = V, + V2, where V, is a solvable potential 
and V,(r)LO (or V l ( r ) s O ) ,  both VI and V2 satisfying (1.1).  As shown by Sugar and 
Blankenbecler (1964): 

V I 3  c VJq,  > v,’ < qjJ VI (1.2) 

where Vij = (qil Vllqj) and q1 . . . qr is any given set of momenta. We thus have a bound 
for V which we use to prove corresponding bounds for the R-matrix elements. 

For a rigorous proof we need to express all quantities in terms of square integrable 
wavefunctions and Hilbert-Schmidt kernels. This is done for VI + V, in 2, and for 
the (local plus separable) bounding potential in § 3, where the Hellmann-Feynman 
theorem is also proved. 

The relation to the Schwinger variational principle is given in § 4, and the bounds 
discussed. It should be noted that in practical calculations several stationary points 
may be found, so that having definite bounds enables one to choose between these. 
Also, the functions (rlq,)  = qirjr(qir) may be replaced by other functions (with similar 
bounds as r + 0 and r + CO) provided the matrix [ Vij] is invertible. 

i j  
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2. The R-matrix for the sum of two potentials 

We consider here the potential V = Vl+  V2, where V1 and V2 both satisfy ( l . l ) ,  
Vl( r )  3 0, and V2 is a solvable potential. The off -shell Lippmann-Schwinger equation 
is 

Qq = qrj,(qr) + Gg VQ, (2.1) 

where (rlGglr’) = k r r ’ j [ ( k r J q ( k r J .  

Hilbert-Schmidt kernels, we introduce (for m, n = 1,2)  
In order to obtain equations involving only square integrable wavefunctions and 

9‘4“ = I  vmll’2Qq, 

4; = 1 vml’”(rlq>= I VmI1”qrj/(qr), 

and 

K,, =IVm11’2GgIV,11’2sgn V,, 

which is Hilbert-Schmidt by the arguments in I. 
Then (2.1) gives 

(the solutions of which can be substituted back into (2.1) to give Gq, even where V, = 0). 
Also, 

(PlRld = (@PI V I 4  
2 

= C (sgn V,*,”, 4; ) .  
m = l  

On-shell ( k l R l k )  = - k tan S. 
Provided cos S 2  # 0 (see I) we can invert (1 - K z 2 )  in (2.3) to obtain 

(2.4) 

Here @f’, the wavefunction for V2 alone, is supposedly known. Hence *;= 
(1 -K)- ’& and = (1 - Kz2)-’4; + (1 - K22)-1K21(1 - K)-’&, so that 

(PlRlq)=(PlRlq)‘2’+(~~ (1 -K)-l+q) =(PlRlq)‘2’+((Lp, *;I (2.8) 

provided that (1 - K )  is invertible, i.e. provided cos S # 0. Note that the wavefunctions 
are only needed where Vl f 0. 
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3. The Hellmam-Feynman theorem 

We now consider the potential (see 9 1) 

as A increases from 0 to 1. With the notation of § 2, (2.3) is replaced by 

9,"=4," +AKml*\I++m,*\I++(1-A) CKm1$iVi1 (4139;) (3.1) 
11 

while (2.4) becomes, recalling Vl 2 0, 

(pIRIq)'A'=A(q;, +;)+(sgn V29g, ~ \ I ) + ( I - A )  C (*;, 4,)V;' (4], 4 : )  (3.2) 
11 

where we put = $;,. 
We now eliminate 4; from (3.2) by means of (3.1) with A replaced by A ' ,  to 

obtain an expression homogeneous in the functions 9; and 97', the dash on the latter 
indicating evaluation at A ' .  We find 

(plRlq)'"'=A(*;, 9; )+  ( 1  - A )  (*;, 4J Vi '  (41,9:) + S (3.3) 
I ]  

where S represents certain terms which are invariant under the simultaneous inter- 
change p - q ,  A - A ' .  Choosing A ' = A  in (3.3) reveals that (P(R1q)'A'=(qlRIp)'A\' 
whence subtracting from (3.3) the same equation with p - q  and A * A '  yields 

= w;, 9;) - c w;, 4,)  v,' ( 4 ] , 9 ; )  (3.4) 
11 

provided that 9; is continuous in A, which we now prove. The kernel KA of (3.1), a 
2 x 2 matrix of integral operators, depends linearly on A, and hence is continuous (in 
the norm) in A. Hence, provided MA = (1 - ICA)-' exists, we can (as in I) use the identity 

MA, - MA = MA [ 1 - ( K A ,  - K A  )MA I-' ( K A ,  - K A  ) M A  (3.5) 
to prove that there is a neighbourhood of A in which MA, is defined and continuous 
in the norm. It follows from (3.1) that qi is continuous in A. 

If (1 - K A )  is not invertible, then we can show, by a similar argument to that in I, 
that cos 6 = 0. The essence of the argument is that the corresponding T-matrix 
kernel must be invertible, or there would be a positive energy bound state. Since the 
complex on-shell wavefunction in that case is el6 cos 6 times our real wavefunction, it 
must satisfy (3.1) with e" cos as inhomogeneous term. Hence the homogeneous 
form of (3.1) can only have a non-trivial solution if cos 6 = 0. 

Now choose p = q .  By virtue of (1.2) and (2.2), (3.4) gives 

(dldh)  (qlRlq)'"'3 0 ,  
Integrating from 0 to 1 we see that 

(41Rlq)'" ~(41R14)'0' (3.6) 

provided cos 6 never vanishes for 0 s  A d 1.  In the context of variational approxima- 
tions we may presume that our approximate potential V(0) is sufficiently close to 
V( 1) = VI + V2 that this is so. 



1250 A E A Warburton 

4. The Schwinger variational principle 

The inequality we have obtained may be related to the Schwinger variational principle. 
Consider the functional 

FW, *) = (plR 1q)'2' + (*p + Wf 3 *J - (Yf 7 ( 1 - K )W (4.1) 

where the R-matrix for V, is given, Jlp and (Lq are defined by (2.6), and K by (2.7). 
This is stationary when 

Y = & + K Y  Y f = ~ p + K Y f  (4.2) 

F=(plRlq)'*'+(*pY;) =(plRlq) (4.3) 

so that, from (2.5), Y = 9; and Y' = 9: and 

the exact R-matrix element for V = Vl + V,, by (2.8). For p = q we need only consider 
Y! = Y, 

In practice, (see, for example, Bessis et a1 1977), Y and Yf are restricted to the 
space EL spanned by the 41 . . . c $ ~  defined in 0 3. In this case we find a stationary value 

where Njj = (c$~, (1 - K)+,) = Nji. (4.4) is the exact off-shell R-matrix element for 

as may be seen, for example, by solving the equations (3.1) with h = 0. (Note, however, 
that the wavefunction Yo produced by the variational method will differ, in general, 
from the function 9; for V(O).) We thus deduce from (3.6) that, for p = q ,  the 
variational method leads to a lower bound for ( p ( R l p ) ,  in the sense that the stationary 
value F ( Y o ,  Yo) on EL is such a bound. From (4.1) with Y' = Y we see that only if 
llKll< 1 can we guarantee that F is a maximum for arbitrary variations in 9. The set 
qi ( i  = 1, L )  is now varied for fixed L, and we seek a maximum of the stationary value 
F ( Y o ,  q0), giving the optimal lower bound to the R-matrix element for the given L. 
By choosing a V, such that VI S 0, upper bounds may similarly be found. 

For p Z q we see, by replacing q by a q + P p  in (3.6), where CY and /3 are arbitrary, 
that 

((PP I q P  - (PlR lq)'o')z(((PIR I P P  - (PlR IP)'o""~''' - (qlRq>'o'). (4.6) 
This enables us to deduce upper and lower bounds for the off-diagonal R-matrix 
elements from those for the on-diagonal elements. If we seek an approximating 
potential V(0) which is independent of the off-shell momenta then (4.6) tells us that 
the greatest error will be for the on-diagonal elements, so that we choose q l . .  , qL to 
minimise the on-diagonal errors. 
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